
Topology and Routing Aware Mapping
on Parallel Processors

THESIS
submitted in partial fulfillment for the award of the degree of

Doctor of Philosophy
in

Computer Science

Devi Sudheer Kumar CH

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE
Sri Sathya Sai Institute of Higher Learning

(Deemed to be University)
Prasanthi Nilayam, 515134, Ananthapur District, A.P., India

February 2013



Abstract
Communication costs of a typical parallel application increase with

the number of processes. With the increasing sizes of current and

future high-end parallel machines, communication costs can account

for a significant fraction of the total run time even for massively parallel

applications that are traditionally considered scalable. Hence, in order

for applications to achieve the scalability for utilizing the very large

number of processing nodes/cores in contemporary and future high

end parallel machines, techniques must be developed to minimize the

communication costs.

One of the important issues that need to be dealt with in the

optimization of communication costs on large machines is the impact

of topology and routing. Though small message latency is not very

dependent on location in the machine, network contention can play a

major role in limiting the bandwidth, even if the bisection bandwidth

is high, due to the limitation of the routing scheme. Knowledge of

topology and routing can be used to map the processes to nodes such

that the inter-process communication lead to less contention on the

network. The quality of a mapping is often measured using a metric

called the hop-bytes metric, which gives an indication of the average

communication load on each link in the network. We develop general

mapping techniques by posing the hop-byte metric as a quadratic

assignment problem (QAP). The QAP is a well studied NP-hard problem

and the existing heuristics available for it can be used to solve the

mapping problem. A limitation of the above metric is that in reality a link

having the maximum load is often the bottleneck. Hence, our objective

is to determine a mapping that minimizes the maximum load on any



given link. A metric based on this idea, called the maximum contention

metric, requires the routing information along with the topology details.

We showed that our heuristics for optimizing this metric is even more

effective in reduction communication costs.

For scaling the applications on the large machines, addressing the

data movement challenge within a node is almost as important as

addressing it across the nodes as discussed above. The inter-core data

movement overhead is strongly influenced by the assignment of threads

to cores for many realistic communication patterns. We identified the

bottlenecks to optimal performance by studying the interconnection

network operational features and used this information to determine

good affinities for standard communication patterns. Our study on the

IBM Cell processor showed that the performance is up to a factor of two

better than the default assignment. We also evaluated the affinity on a

Cell blade consisting of two Cell processors, and developed a tool that

can automatically select a suitable mapping for a given communication

pattern.
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1. Introduction

High performance computing power is believed to be the key

to scientific & engineering leadership, industrial competitiveness,

and national security. Major scientific discoveries and engineering

breakthroughs are accelerated by utilizing world-leading computing

facilities. Scientific applications range from drug discovery and

genomics research, Oil exploration and energy research to weather

forecasting and climate modeling. The escalating computational

requirements of such applications has motivated the development of

massively parallel machines, like the recent Blue Gene (BG/Q) machine

from IBM and the Cray XE6 based Blue Waters machine at NCSA.

Parallelism at the scale of millions of processors can be seen on these

machines. The compute nodes in such machines are interconnected

using tightly-coupled network. And hence it is essential that techniques

for efficient and uniform utilization of the network resources be

developed. Suitable mapping of tasks in a parallel application to nodes of

these machines can substantially improve communication performance

by reducing network congestion.
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1.1 Motivation

The annual rate at which the time for flop is improving (59%) is

far greater than the rate at which network link bandwidth is improving

(26%). Hence, computation is cheap compared to communication and

the network links are oversubscribed. The motivation for this research

are the studies that are showing that communication costs can already

exceed arithmetic costs by orders of magnitude, and the gap is growing

exponentially over time. As massively parallel computers become larger,

the interconnect topology will play a more significant role in determining

the communication performance. Although, ideally, we would not want

to use the topology information since this will result in techniques that

are specific to a topology or an architecture. However, at the scale of

millions of processing cores, the impact of topology and routing is so

significant that they must be taken into consideration in order to achieve

necessary scalability.

Some supercomputers such as Cray’s XT5 [1], XK6 [2] and IBM Blue

Gene/P [3] machines have 3D torus topologies. In such computers,

minimizing network contention by matching communication pattern

with the topology is critical for the communication performance

[4]. Other current massively parallel computers such as the TACC

Ranger use the nonblocking fat-tree topology. Although the fat-tree is

nonblocking, the network has contention especially with static routing

in InfiniBand networks [5]. Hence, for massively parallel computers,

network contention can have a significant impact on performance: to

minimize network contention, topology and routing must be taken into

consideration.
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There are several ways the topology and routing can be used for

optimizing communication performance. In this work, we consider

topology and routing aware process assignment. Depending on

application communication pattern, the mapping from logical MPI

processes to physical cores determines the physical communication.

Recent works [4, 9, 10, 11, 12, 13, 14, 15, 16] have shown substantial

communication performance improvement on large parallel machines

by suitable assignment of processes or tasks to nodes of the machine.

Earlier works on graph embedding are usually not suitable for modern

machines because the earlier works used metrics suitable for a store-

and-forward communication mechanism.

On modern machines on the other hand, in the absence of network

congestion, latency is quite independent of location; communication

performance is limited by contention on specific links. Yet another

significant difference is that the earlier works typically embedded graphs

onto standard network topologies such as hypercubes and meshes. On

massively parallel machines, jobs typically acquire only a fraction of

the nodes available, and the nodes allocated do not correspond to any

standard topology, even when the machine does. For example, we

show below in figure 1.1 an allocation for 1000 nodes on the 3D torus

Jaguar machine at ORNL. We can see that the nodes allocated are several

discontinuous pieces of the larger machine. Assignment of tasks to

nodes that take this into account can reduce communication overhead.

The latest massively parallel systems are predominantly being built

from nodes with multi-cores. This trend is evident when considering the

systems of the Top500 list of supercomputers [17], which are expected

to feature, in a close future, fat many-core nodes composed of as many

3



Figure 1.1: Allocation of 1000 nodes on Jaguar; The axes correspond
to indices on the 3D torus, and the Green region corresponds to the
allocated nodes.

as a hundred of cores. As the number of processor cores integrated

onto a single die increases, varieties of ways of interconnecting these

on-chip cores are explored. Buses, rings and 2D meshes have been

used as the on-chip interconnection network topologies. The increasing

number of cores on the chip underscores the importance of on-chip

communication performance and hence the mapping on the chip. We

evaluate the mapping within a multi-core using the IBM Cell processor

as a case study.

1.2 Research Goals

The first part of this thesis discusses the methodology adopted

for efficient mapping on the Cell processor. The Cell based blades

are used in the Roadrunner supercomputer at LANL, one of the

first supercomputer to reach the petaflop mark. The bulk of the

4



computational workload on the Cell processor is carried by eight co-

processors called SPEs. The SPEs are connected to each other and to

main memory by a high speed bus called the Element Interconnect Bus

(EIB). The bandwidth utilization on EIB is reduced due to the congestion

created by the simultaneous communications. We observed that the

effective bandwidth obtained for inter-SPE communication is strongly

influenced by the assignment of threads to SPEs (Thread-SPE affinity).

We have demonstrated a performance improvement of around 10%-

12% for a communication intensive Monte Carlo particle simulation

application.

The next part of the thesis discusses the techniques used for

determining the mapping of parallel tasks to nodes in massively parallel

machines so as to efficiently utilize the networking infrastructure.

We have used a topology aware mapping scheme to improve the

performance of communication in the load balancing step of a QMC

application on Jaguar. In this scheme, we obtained the physical

topology of Jaguar (which implies the routing scheme) from the system

administrator. Using this information, we rearrange the order of

the MPI processes by creating a new communicator that ranks the

nodes according to their relative position on a space-filling curve: this

ensures that each node is likely to send data to nearby nodes in the

communications in this phase. Using this reordering, we were able to

reduce the communication time in the load balancing phase by 30% on

120,000 cores and 20% on 12,000 cores, and this mapping also reduced

MPI allgather time by a similar amount.

Encouraged by these results, we then embarked on the task of finding

more generic solutions to this mapping problem. The optimal mapping
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of processes to nodes is an NP hard problem, and hence heuristics are

used to solve it approximately. Recent works use heuristics that can

be intuitively expected to reduce network congestion and then evaluate

them either empirically or using some metric. The hop-byte metric has

attracted much attention recently as metric to evaluate the quality of a

mapping. It is defined as the sum over all the messages of the product

of the message size and number of hops the message has to traverse.

On a store-and-forward network, this would correspond to the total

communication volume. The intuition behind this metric is that if the

total communication volume is high, then it is also likely to increase the

contention for specific links, which would then become communication

bottlenecks. Although this metric does not directly measure the

communication bottleneck caused by contention, heuristics with low

values of this metric tend to have smaller communication overheads.

This serves as a justification for this metric. The advantage of this

metric is that it requires only the machine topology, while computing

contention would require routing information.

In contrast to other approaches, we use the hop-byte metric for

producing the mappings too, rather than just using it for evaluating the

mapping. Optimizing for the hop-byte metric can easily be shown to be

a specific case of the Quadratic Assignment Problem (QAP), which is NP

hard. Exact solutions can be determined using branch and bound for

small problem sizes. We use the existing GRASP heuristic for medium-

sized problem. An advantage of the QAP formulation is that we can

use theoretical lower bounds to judge the quality of our solution. The

time taken to determine the mapping using an exact solver or GRASP

increases rapidly with problem size. In that case, we consider a couple
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of alternate approaches. In the first case, we develop new heuristics that

improve on some limitations of other heuristics for this problem. In the

second case, we use graph partitioning to break up the problem into

smaller pieces, and then apply GRASP to each partition.

We evaluate our approach on six different communication patterns.

We determine the values of the metric for different heuristics using node

allocations obtained on the Kraken supercomputer at NICS. In contrast

to other works that usually assume some standard topology, our results

are based on actual allocations obtained. We see up to 75% reduction

in hop-bytes over the default allocation, and up to 66% reduction over

existing heuristics. Furthermore, our results are usually within a factor

of two of a theoretical lower bound on the solution. For small problem

sizes, that lower bound is usually just a little over half the exact solution.

Consequently, it is likely that our solutions are close to optimal.

Though the above techniques optimize the hop-byte metric very well,

this theoretical improvement is not as well reflected in the empirical

results using this optimized metric. This highlights the limitations of

the hop-byte metric, and hence we considered the maximum contention

metric as an alternative. A heuristic to optimize for this metric shows

promising empirical performance.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses

previous work in this field. There was much work in the 1980s on

topology aware mapping when the systems used to have packet switched

networks. In packet-switching networks, communication performance

is sensitive to path lengths and minimizing dilation costs is usually
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the mapping objective [18, 19]. However, experimental results confirm

that in wormhole-routed networks, communication performance does

not depend any more on path lengths and minimizing dilation costs is

no longer a concern [20] and hence the research in this area ceased.

There has been recent work in the past seven years triggered by the

development of IBM Blue Gene/L, a supercomputer using 3D torus

topology. Contributions of this thesis and differences with the recent

work are also discussed. In chapter 3, we provide a brief survey of the

existing interconnect topologies and routing schemes used in the multi-

cores and in the large machines. This chapter also presents architectural

details of the machines used for experiments in this thesis. Topology

information of an allocated job is a vital for mapping algorithms and the

process of topology discovery on Cray machines is discussed.

Chapter 4 presents the mapping algorithms and performance results

on a Cell processor. The evaluation of the mapping techniques are done

with some standard communication patterns as well with a realistic

application. The chapter concludes with a description of a tool which

can be used to automatically determine the optimal mapping for any

given communication pattern. The rest of the thesis discusses the

mapping techniques used for the large machines.

Chapter 5 demonstrates the performance improvements of mapping

for a specific production scale scientific application QWalk [21]. The

load balancing step can be a significant factor affecting performance,

and we propose a new dynamic load balancing algorithm and evaluate it

theoretically and empirically. Empirical results on the petaflop Cray XT

Jaguar supercomputer showed up to 30% improvement in performance

on 120,000 cores. These techniques used for mapping are specific to
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the QWalk type applications, and a more general approach to mapping

is required and that will be the topic of the next chapter. Chapter

6 discusses the methods used to optimize the hop-byte metric, an

important contribution of this thesis. Apart from proposing two new

heuristics for mapping, whose quality with respect to the metric value

is evaluated, we also use a heuristic to directly optimize for this metric.

The scalability of the heuristics is analyzed and subsequently improved

using graph partitioning techniques. Then we also present results with

the maximum contention metric in Chapter 7. Empirical results show

that this metric better represents the mapping quality compared to the

hop-byte metric. We then present a summary and new directions for

research in the concluding chapter.
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2. Related Work

Mapping of processes to nodes based on network topology attracted

much attention in the earlier years of parallel computing. Techniques

to map processes onto various high-performance interconnects such as

crossbar based network, hypercube network, switch-

based interconnects, and multidimensional grids were developed [6], [7],

[8]. The research in this area lost its importance for some time with

the advent of communication mechanisms such as worm-hole routing.

However, for reasons explained in section 1.1, it had once again attracted

much attention recently.

The idea of the mapping problem is that given an application

communication graph and the processor allocation graph, the objective

is to map the first graph onto the second graph such that most messages

pass through a small number of links in the network. This problem is

similar to the graph embedding problem which is NP-hard, and hence

heuristics are used to arrive at a reasonable solution. The application

communication graph is either regular or irregular. And the node

allocation graph on most of the systems is arbitrary, except on BlueGene

systems where contiguous cuboidal partitions are provided for the jobs.

However, much of the work in the recent past on topology aware

mapping assumes the node allocation graph as regular. Our attempt
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in this thesis is to map effectively onto the more realistic arbitrary

node allocations. In this chapter, we first discuss the research done

on mapping communication graphs onto regular allocation graphs. We

then present the work done on mapping onto arbitrary node allocations.

We also discuss few mapping techniques that are specific to some

applications or specific to some network topology.

2.1 Mapping onto Regular Graphs

Different topological strategies for mapping torus process topologies

onto the torus network of Blue Gene/L were presented by Yu, Chung,

and Moreira [4]. Their work deals with node mappings for simple

regular graphs such as 1D rings, 2D meshes and 3D grids/tori. Several

techniques for mapping more generic regular communication graphs

onto regular topologies were developed [15]. They developed a

framework to automatically map 2D communication graphs onto 2D/3D

mesh and torus topologies. Both these works use the hop-byes as the

metric to evaluate the mapping quality. The mapping is a NP-hard

problem [28]; hence heuristics are used to approximate the optimal

solution. Heuristic techniques for mapping applications with irregular

communication graphs to mesh and torus topologies were developed,

and some of them even take advantage of the physical coordinate

configuration of the allocated nodes [12]. The performance of these

heuristics were evaluated based on the hop-byte metric.

11



2.2 Mapping onto Irregular Graphs

The more realistic and difficult problem is to map onto the arbitrary

node allocation graphs. Hoefler and Snir [13] present mapping

algorithms that are meant for more generic use and the algorithms

are evaluated using the maximum congestion metric – the message

volume on the link with maximum congestion. Their heuristics based

on recursive bisection and graph similarity were used to map application

communication patterns on realistic topologies. The metrics here again

are used to evaluate the mappings rather than being used to determining

the mapping. The algorithm Greedy Graph Embedding (GGE) proposed

in [13] is used by us for comparison, because it performs best among

the heuristics they have proposed. Furthermore, the algorithm can be

used with arbitrary communication patterns and network topologies,

even though the implementation in [13] was more restricted. Graph

partitioning libraries such as SCOTCH [26] and Metis [27] provide

support for mapping graphs to network topologies.

2.3 Application Specific Mapping

It is beneficial to use application specific features to assist the

mapping algorithm in arriving at a better solution. Bhatele and Kale

[11] proposed topology-aware load-balancing strategies for Molecular

Dynamics applications using CHARM++. Their analysis maps mesh and

torus process topologies to other mesh and torus network topologies.

Several applications [22], [23], [24] have developed their own hand-tuned

mapping algorithms and mechanisms to optimize communication.
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2.4 Mapping for Specific System Topologies

Krishna et al. developed topology aware collective algorithms for

Infiniband networks. These networks are hierarchical with multiple

levels of switches, and this knowledge was used in designing efficient

MPI collective algorithms [16]. The reduced scalability of the latency and

effective bandwidth due to interconnect hot spot for fat-tree topologies

is addressed with topology-aware MPI node ordering and routing-aware

MPI collective operations [25].

2.5 Topology Aware Job Scheduling

Massively parallel systems such as Cray XT and Blue Gene/P

systems are generally heavily loaded with multiple jobs running and

sharing the network resources simultaneously, this results in application

performance being dependent on the node allocation for a particular job.

Balaji et al. [29] analyzed the impact of different process mappings on

application performance on a massive Blue Gene/P system [10]. They

show that the difference can be around 30% for some applications and

can even be two fold for some. They have developed a scheme whereby

the user can describe the application communication pattern before

running a job, and the runtime system then provides a mapping that

potentially reduces contention.

2.6 Contributions of This Thesis

Here we highlight the main contributions this thesis. The first

major contribution is the work on mapping effects on a multi-core

13



processor. Ours is one of the first work to show the effects of affinity on

a Cell processor. A tool to automatically detect the optimal mapping is

developed, which eases burden on the application programmers. This

work created an awareness about the importance of mapping on multi-

core processors. Though Cell is no longer used now, the ideas presented

in this work can well be applied for generating mapping techniques

aimed for other multi-core processors.

The massively parallel machines will generally have a regular

interconnect topology, however, that does not guarantee that the nodes

allocated for a specific job allocation follow a regular topology. Many of

the previous works on the mapping assumed a regular node allocation

topology, and the mapping techniques and heuristics are designed

accordingly. However, the mapping heuristics proposed in this work do

not have any such assumptions and hence they are more applicable for

the realistic node allocation scenarios.

The problem is motivated by showing some encouraging

performance improvements on a production scale application, QWalk.

We also developed a new dynamic load balancing algorithm which

is more efficient theoretically and empirically, especially for future

machines. To evolve more generic mapping techniques, we have posed

the mapping problem as a well know QAP problem and used a heuristic

to optimize the metric itself rather than just using it for evaluation. This

heuristic using for communication graphs from production codes and

allocations on real machines showed encouraging results. An alternate

metric, maximum contention metric, to better quantify the mapping

quality is also used and evaluated.
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3. Interconnection Topologies

In the area of high performance computing, the interconnect is

second only to the microprocessor in terms of performance-critical

components. As systems expand into ever increasing number of

processors, the interconnect is the enabling technology that allows the

underlying computation to scale efficiently. Topology and routing are

the two key properties of a network.

3.1 Topology and Routing

Topology of a network determines the arrangement of nodes and

links in the network and it is one of the first step in a network design.

Several different topologies are used in the largest supercomputers today.

Three dimensional tori and meshes (Cray’s XK and XT series, and IBM

Blue Gene series) and fat-trees (Infiniband and Federation) are the most

commonly used topologies. The next important property of network is

routing and it determines path(s) from source to destination. A routing

algorithm’s ability to balance traffic (or load) has a direct impact on the

throughput and performance of the network. A routing method that does

not use the state of the network for routing decisions is termed oblivious

routing. And the method that uses the state of the network is called
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adaptive routing. IBM Blue Gene/P uses minimal adaptive routing and

the Cray supercomputers generally use dimension order routing.

Apart from the growing importance of networking used to connect

the nodes in a big machine, there has been a growing importance of

networking used within a node. All the machines in the current Top500

list has multi-core processor(s) in their nodes. As the number of on-

chip cores on a multi-core increases, a scalable and high-bandwidth

communication fabric to connect them becomes critically important.

This evolution of interconnection networks as core count increases is

clearly illustrated in the choice of a flat crossbar interconnect connecting

all eight cores in the Sun Niagara (2005) [30], four packet-switched rings

in the 9-core Cell (2005) [31], five packet-switched meshes in the 64-core

Tilera TILE64 (2007), and Intel’s SCC [32] and Core i7 [33].

3.2 Categorization of Topologies

A network topology can be categorized as direct or indirect. In a

direct topology, each terminal node (e.g. a processor core in a chip

multiprocessor or a compute node in supercomputer) also acts as a

routing element, so all the nodes are sources and destinations of traffic.

In a direct topology, nodes can source and sink traffic, as well as switch

through traffic from other nodes. In an indirect topology, the routing

elements are distinct from terminal nodes; only terminal nodes are

sources and destinations of traffic, intermediate nodes simply switch

traffic to and from terminal nodes. Most of the on-chip networks built

till date have used direct topologies.
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3.2.1 Indirect Topologies

A fat-tree [34] is logically a binary tree network, with processing nodes

at the leaves and switches at the intermediate nodes. In a fat-tree, the

wiring resources increase for stages closer to the root node. Figure 3.1

depicts a simple three level binary fat-tree.

Figure 3.1: Fat-tree topology.

Fat-tree or CLOS topologies are well suited for smaller node-count

systems. Fat-tree topologies provide non-blocking interface and small

hop counts resulting in reasonable latency for MPI jobs. At the same

time, fat-tree topologies do not scale linearly with cluster size. As

cluster size grows, cabling and switching become increasingly difficult

and expensive with very large core switches required for larger clusters.

Stampede machine at TACC has more than 6,000 nodes interconnected

via a fat-tree, FDR (fourteen data rate) InfiniBand interconnect. The

Ranger machine at Texas Advanced Computing Center (TACC) has a 7-

stage fat-tree, with 3,936 compute nodes connected with two 3,456 port

SDR Sun Infiniband datacenter switches.

As more the system grows, more are the limits of the fat-tree switched
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topologies in terms of cost, maintainability, power consumption,

reliability and, above all, scalability.

3.2.2 Direct Topologies

Hypercube topology has many useful features such as small diameter,

high connectivity, symmetry and simple routing. However, lack of

scalability is its major drawback, which limits its use in building large

size systems in the current generation. Mesh and torus networks, a

generalization of the hypercube, can be described as k-ary n-cubes,

where k is the number of nodes along each dimension, and n is the

number of dimensions. For instance, a 6 x 6 mesh or torus is a 6-

ary 2-cube with 36 nodes, a 8 x 8 mesh or torus is a 8-ary 2-cube

with 64 nodes, while a 4 x 4 x 4 mesh or torus is a 4-ary 3-cube with

64 nodes. This notation assumes the same number of nodes on each

dimension, so total number of nodes is ’kn’. To map well to the planar

substrate, most on-chip networks utilize 2D topologies; this is not the

case for off-chip networks where cables between chassis provide 3D

connectivity. In each dimension, k nodes are connected with channels

to their nearest neighbors. Ring topologies fall into the torus family

of network topologies as k-ary 1-cubes. Figure 3.2 shows a 3D mesh

network, a 2,3,4-ary 3-mesh.

The basic shortest-path routing in general meshes is simple. It is

called dimension ordered routing. The addresses of the sender and

receiver are inspected in a specified order and the message is sent via the

first port corresponding to a coordinate in which the addresses differ. In

2D and 3D meshes, this is called XY and XYZ routing. Cyclic structure of

tori makes shortest path routing algorithms more complicated, but the
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Figure 3.2: A three dimensional Mesh

basic approach remains dimension ordered routing.

The diameter of graph (G) is defined as the maximum distance

between any two vertices of G. For a 3D mesh, if the size of the mesh

in each dimension is n, the diameter of the mesh is 3 x (n - 1). For a 3D

torus with size n in each dimension, the diameter of the torus is 3 x (n/2)

Practicality of Torus Topologies

Even though torus topologies are not asymptotically scalable,

because of simplicity of design and other practical considerations, torus

networks are a popular choice for modern day supercomputers. As per

the Top500 list released in June 2012, six of the ten fastest machines use

a 3D torus interconnect topology. This thesis focuses primarily on such

networks for the experiments, though the results, especially optimization

of hop-byte and maximum contention metrics can very well be applied

to other topologies. We now describe the configurations of multi-core

processors as well as supercomputers that use these direct topologies.
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3.3 On-chip Interconnection Topologies

The interconnect of Cell processor consists of four unidirectional

rings, two in each direction. As each ring is 16 bytes wide, runs at 1.6 GHz,

and can support 3 concurrent transfers with a total network bisection

bandwidth of 204.8 GB/s [37, 41]. However, the bus access semantics and

the ring topology can lead to a worst-case throughput of 50% or even less

with adversarial traffic patterns.

The Intel TeraFLOPS chip consists of an 8 x 10 mesh, with each

channel composed of two 38-bit unidirectional links. It runs at an

aggressive clock speed of 5 GHz on a 65 nm process. This design gives

it a bisection bandwidth of 380 GB/s or 320 GB/s of actual data bisection

bandwidth, since 32 out of the 38 bits of a flit are data bits; the remaining

6 bits are used for sideband. Again, depending on the traffic, routing and

flow control, realizable throughput will be a fraction of that [35].

Intel Nehalem EX use high-speed ring topologies for inter core

communications. It uses twin 256-bit wide rings encircling eight

cores for bi-directional interprocessor communications. For the 32-

core prototype chips, the predecessor to the 50-core Knight’s Corner

boards, Intel has boosted its ring topology to 1024-bits wide, offering bi-

directional 512-bit wide rings.

3.4 Supercomputer Interconnection Topologies

3.4.1 Jaguar

The multi-petaflop system at ORNL, called Jaguar, prior to the

recent upgrade to Titan, housed 18,688 Cray XT5 compute nodes
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interconnected with SeaStar in a 3D torus topology. In recent transition

of Jaguar to Titan, it now uses Cray’s Gemini interconnect. The massively

parallel system at NICS, Kraken is a Cray XT5 system with 9,408 nodes

interconnected with the SeaStar router through HyperTransport. The

SeaStars are all interconnected in a 3D torus topology. The routing

on these machines uses fixed paths between pairs of nodes, and sends

data along the x coordinate of the torus, in the direction of the shortest

distance, then in the y direction, and finally in the z direction. Thus,

in a fault-free network, this straightforward dimension-ordered routing

(DOR) algorithm will enable balanced traffic across the network links.

3.4.2 Blue Waters

Blue Waters supercomputer coming up at NCSA is made up of over

300 cabinets, with 25,000 nodes, over 380,000 cores, aided by more than

3,000 NVIDIA GPU’s. It employs the Cray Gemini interconnect, which

implements a 3D torus topology (23x24x24) with a bisection bandwidth

of 10.35 TB/s. Fujitsu’s Tofu [36] interconnect is used in Japan’s K

supercomputer, the system ranked 2 in the Top500 list of June 2012.

Tofu realizes scalable systems beyond 100,000 nodes with low power

consumption, low latency, and high bandwidth. The Tofu interconnect

uses a 6D mesh/torus topology in which each cubic fragment of the

network has the embeddability of a 3D torus graph, allowing users to run

multiple topology-aware applications [36].

3.4.3 Blue Gene/Q

In a Blue Gene/Q based system, compute nodes are interconnected

via a 5D torus. To support a 5D torus, 10 bidirectional ports, or links, are
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required. With an internal 5D torus interconnect supporting 563 GB/s

of bisection bandwidth and a memory bandwidth of 32 GB/s, each BG/Q

processor can deliver 204.8 GFlop/s of peak computing power. With 1024

16-core compute chips, a BG/Q rack can deliver 209 TFlop/s of peak

computing performance. The largest deployment of BG/Q, the Sequoia

system in the LLNL is composed of 96 BG/Q racks containing 1,572,864

cores exhibiting an overall peak power of around 16 PFlop/s. The other

versions of Blue Gene, Blue Gene/L and Blue Gene/P also use the 3D

torus topology.

3.5 Comparision of Direct and Indirect Topologies

Most commonly used topology for InfiniBand fabrics today is a fat-

tree topology. With a fat-tree topology, every node has equal access

bandwidth to every other node in the cluster. Fat-tree is a great

topology for running large scale applications where nodes do a lot of

communication with each other. In contrast, a 3D torus topology is

best used for applications that use communications between localized

compute nodes, as this locality is usually a requirement to achieve

optimal performance with a torus.

Though the SDSC Gordon supercomputer uses the Infiniband

interconnect, the topology it employs is not a fat-tree. Because of the

nature of the applications targeted for the system, where in many cases

localization constraints within the application are employed, the 3D

torus architecture is more suitable from a performance standpoint. The

3D torus in Gordon was built using 36-port switch nodes in a 4x4x4

configuration, for a total of 64 torus junctions. Each of these junctions

connects to 16 compute nodes, and 2 IO nodes, with inter-node links
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using 3 switch ports in each of the +/- X, Y, and Z directions. It can

be summarized that fat-tree topology provides the best performance

solution, however, 3D torus can be more cost effective, easier to scale,

good fit for applications with locality.

3.6 Network Performance Metrics

To characterize the performance of the network, abstract metrics

such as hop count and maximum channel load can be used. Assuming

ideal routing, hop count can be used as a metric to evaluate the

performance of a network. Hop count is defined as the number of

hops a message takes from source to destination. The diameter of

a network is determined as the largest minimum hop count in the

network. The average hop count for a torus network is found by

averaging the minimum distance between all possible node pairs. The

other metric, maximum channel load, is based on the intuition that

the most congested link for a given communication pattern will limit

the overall network bandwidth. Bottleneck channels determine the

saturation throughput. Higher the channel load, greater the chance

of network congestion. For distance sensitive routing such as store-

and-forward, small average hop distance allows small communication

latency. For distance insensitive routing such as wormhole routing,

short distances imply less used links and buffers, and therefore less

communication contention, it is also crucial for them.
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3.7 Topology Detection

The other important issue is finding the topology of the nodes

allocated for a job, though the entire machine has a regular topology,

the allocation topology is irregular often, as the available nodes chosen

by the job scheduler could potentially be taken from different parts

of system. Topology information of an allocated job is a vital for

mapping algorithms and the topology discovery on Cray machines can

be done using Cray Resiliency Communication Agent (RCA) library [38].

Detecting topology for an Infiniband based network is non trivial and a

tool for doing the same is developed recently using the neighbor joining

algorithm [39].
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4. Optimizing Assignment of

Threads to SPEs on Cell BE

4.1 Introduction

The Cell BE contains a PowerPC core, called the PPE, and eight co-

processors, called SPEs. The SPEs are meant to handle the bulk of the

computational workload, and have a combined peak speed of 204.8

GFlop/s in single precision and 14.64 GFlop/s in double precision. They

are connected to each other and to main memory by a high speed bus

called the EIB, which has a bandwidth of 204.8 GB/s.

However, access to main memory is limited by the memory interface

controller’s performance to 25.6 GB/s total (both directions combined).

If all eight SPEs access main memory simultaneously, then each sustains

bandwidth less than 4 GB/s. On the other hand, each SPE is capable

of simultaneously sending and receiving data at 25.6 GB/s in each

direction. Latency for inter-SPE communication is under 100 ns for short

messages, while it is a factor of two greater to that of main memory.

It is, therefore, advantageous for algorithms to be structured such that

SPEs tend to communicate more between themselves, and make less use

of main memory. The latency between each pair of SPEs is identical
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for short messages and so affinity does not matter in this case. In the

absence of contention for the EIB, the bandwidth between each of pair

of SPEs is identical for long messages too, and reaches the theoretical

limit. However, we show later that in the presence of contention, the

bandwidth can fall well short of the theoretical limit, even when the

EIB’s bandwidth is not saturated. This happens when the message size

is greater than 16 KB. It is, therefore, important to assign threads to

SPEs to avoid contention, in order to maximize the bandwidth for the

communication pattern of the application.

The outline of the rest of the chapter is as follows. In section 4.2,

we summarize important architectural features of the Cell processor

relevant to this work. We next show that thread-SPE affinity can have

significant influence on inter-SPE communication patterns in section

4.3. We also identify factors responsible for reduced performance. We

use these results to suggest good affinities for common communication

patterns. We then evaluate them empirically in section 4.4. We next

discuss optimizing affinity on the Cell Blade in section 4.5. A tool that

can automatically suggest optimal mapping, and its evaluation using

few standard communication patterns and a realistic application will be

described next.

4.2 Cell Architecture Overview

We summarize below the architectural features of

the Cell of relevance to this work, concentrating on the communication

architecture. Further details can be found in [41, 44].

Figure 4.1 provides an overview of the Cell processor. It contains a

cache-coherent PowerPC core called the PPE, and eight co-processors,
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Figure 4.1: Overview of the Cell communication architecture.

called SPEs, running at 3.2 GHz each. It has a 512 MB - 2 GB external

main memory. An XDR memory controller provides access to main

memory at 25.6 GB/s total, in both directions combined. The PPE,

SPE, and memory controller are connected via the EIB. The maximum

bandwidth of the EIB is 204.8 GB/s. In a Cell Blade, two Cell processors

communicate over a BIF bus. The numbering of SPEs on processor 1 is

similar, except that we add 8 to the rank for each SPE.

The SPEs have only 256 KB local store each, and they can directly

operate only on this. They have to explicitly fetch data from memory

through DMA in order to use it. Each SPE can have 16 outstanding

requests in its DMA queue. Each DMA can be for at most 16 KB. However,

a DMA list command can be used to scatter or gather a larger amount of

data. When we perform experiments on messages larger than 16 KB, we

make multiple non-blocking DMA requests, with total size equal to the

desired message size, and then wait for all of them to complete.

In order to use an SPE, a process running on the PPE spawns an SPE

thread. Each SPE can run one thread, and that thread accesses data
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from its local store. The SPEs’ local stores and registers are mapped to

the effective address space of the process that spawned the SPE threads.

SPEs can use these effective addresses to DMA data from or to another

SPE. As mentioned earlier, data can be transferred much faster between

SPEs than between SPE and main memory [41, 44].

The data transfer time between each pair of SPEs is independent of

the positions of the SPEs, if there is no other communication taking

place simultaneously [42]. However, when many simultaneous messages

are being transferred, transfers to certain SPEs may not yield optimal

bandwidth, even when the EIB has sufficient bandwidth available to

accommodate all messages.

In order to explain this phenomenon, we now present further details

on the EIB. The EIB contains four rings, two running clockwise and two

running counter-clockwise. All rings have identical bandwidths. Each

ring can simultaneously support three data transfers, provided that the

paths for these transfers don’t overlap. The EIB data bus arbiter handles

a data transfer request and assigns a suitable ring to a request. When a

message is transferred between two SPEs, the arbiter provides it a ring

in the direction of the shortest path. For example, transfer of data from

SPE 1 to SPE 5 would take a ring that goes clockwise, while a transfer

from SPE 4 to SPE 5 would use a ring that goes counter-clockwise. If

the distances in clockwise and anti-clockwise directions are identical,

then the message can take either direction, which may not necessarily

be the best direction to take, in the presence of contention. From these

details of the EIB, we can expect that certain combinations of affinity and

communication patterns can cause non-optimal utilization of the EIB.

We will study this in greater detail below.
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4.3 Influence of Thread-SPE Affinity on Inter-SPE

Communication Performance

We show that the affinity significantly influences communication

performance when there is contention. We then identify factors that lead

to loss in performance, which in turn enables us to develop good affinity

schemes for a specified communication pattern.

4.3.1 Experimental Setup

The experiments were performed on the CellBuzz cluster at the

Georgia Tech STI Center for Competence for the Cell BE. It consists of Cell

BE QS20 dual-Cell Blades running at 3.2 GHz with 512 MB memory per

processor. The codes were compiled with the ppuxlc and spuxlc compilers,

using the -O3 -qstrict flags. SDK 2.1 was used. Timing was performed

by using the decrementer register which runs at 14.318 MHz, yielding a

granularity of around 70 ns.

4.3.2 Influence of Affinity

We mentioned earlier that affinity does not matter when there

is no contention. Figure 4.2 presents performance results when

there are several messages simultaneously in transit, for the following

communication pattern: threads ranked i and i + 1 exchange data with

each other, for even i. This is a common communication pattern,

occurring in the first phase of Recursive Doubling algorithms, which are

used in a variety of collective communication operations. The results are

presented for three specific affinities and for the default. (The default
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Figure 4.2: Performance in the first phase of Recursive Doubling –
minimum bandwidth vs. message size.

Figure 4.3: Performance in the first phase of Recursive Doubling –
bandwidth on different SPEs for messages of size 64 KB.
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affinity is somewhat random as mentioned earlier; we present results

for one specific affinity returned by default – a more detailed analysis

is presented later.) We provide details on the affinities used in a later

section (4.4). Our aim in this part of the section is just to show that

affinity influences performance.

Figure 4.2 is meant to identify the message size at which affinity

starts to matter. Note that the bandwidths obtained by different SPEs

differ. The results show the minimum of those bandwidths. This is an

important metric because, typically, the speed of the whole application is

limited by the performance of the slowest processor. We can see that the

affinity does not matter at less than 16 KB data size, because the network

bandwidth is not fully utilized then. With large messages, as a greater

fraction of the the network bandwidth is utilized, affinity starts having

a significant effect. Figure 4.3 shows the bandwidth obtained by each

SPE with two different affinities, in one particular trial. We can see that

some SPEs get good performance, while others perform poorly with a

bad affinity.

We next give statistics from several trials. Figure 4.4 gives the results

for the default affinity. If we compare it with fig. 4.6, we can see that

the standard deviation is much higher for the default affinity than for

the Identity affinity (which is described later). There are two possible

reasons for this: (i) In different trials, different affinities are produced by

default, which can lead to a large variance. (ii) For the same affinity, the

variance could be high. It turns out that in these eight trials, only two

different affinities were produced. The mean and standard deviation

for each affinity was roughly the same. The high variance is primarily

caused by the inherent variability in each affinity. This often happens
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Figure 4.4: Performance in the first phase of Recursive Doubling with
default affinities – bandwidth on each thread.

Figure 4.5: Performance in the first phase of Recursive Doubling with
default affinities – minimum bandwidth in each of the eight trials.
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Figure 4.6: Performance in the first phase of Recursive Doubling with the
Identity affinity – bandwidth on each thread.

in cases where contention degrades performance – when there is much

contention, there is more randomness in performance which causes

some SPEs to be have lower performance. Figure 4.4 shows that most of

the SPEs have good mean performance. However, we also observe that

most SPEs have a low value of their worst performance. In most trials,

some thread or the other has poor performance, which proves to be a

bottleneck. In contrast, all SPEs consistently obtain good performance

with the Identity affinity. This contrast is illustrated in figures 4.5 and 4.7.

For some other communication patterns, the default assignment yields

some affinities that give good performance and some that yield poor

performance. In those cases the variance is more due to the difference

in affinities.
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Figure 4.7: Performance in the first phase of Recursive Doubling with the
Identity affinity – minimum bandwidth in each of the eight trials.

4.3.3 Performance Bottlenecks

We experimented with simple communication steps, in order to

identify factors that are responsible for loss in performance. These

results, which are presented in [42], suggest the following rules of thumb

for large messages.

1. Avoid overlapping paths for more than two messages in the same

direction. This is the most important observation.

2. Given the above constraints, minimize the number of messages

in any direction by balancing the number of messages in both

directions.

3. Don’t make any assumptions regarding the direction of transfer for

messages that travel half-way across the EIB ring.
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4.4 Affinities and Their Evaluation

We now propose some affinities that appear reasonable, and evaluate

their performance empirically. We used the affinities mentioned below,

other than the default. They were designed to avoid the bottlenecks

mentioned in section 4.3.

• Identity The thread ID is identical to the physical ID of the SPE.

• Ring (Physical ID, Thread Number) mapping: {(0, 0), (1, 7), (2, 1),

(3, 6), (4, 2), (5, 5), (6, 3), (7, 4)}. Thread ranks that are adjacent are

also physically adjacent on the EIB ring, and thread 7 is physically

adjacent to thread 0.

• Overlap Mapping: {(0, 0), (1, 7), (2, 2), (3, 5), (4, 4), (5, 3), (6,

6), (7, 1)}. Here, threads with adjacent ranks are half way across

the ring. We would expect poor results on a ring communication

pattern. We use this as a lower bound on the performance for a

Ring communication pattern.

• EvenOdd Mapping: {(0, 0), (1, 4), (2, 2), (3, 6), (4, 1), (5, 5), (6, 3),

(7, 7)}. Even ranks are on the left hand side and odd ranks are on

the right hand side. This affinity was designed to perform well with

recursive doubling.

• Leap2 Mapping: {(0, 0), (1, 4), (2, 7), (3, 3), (4, 1), (5,

5), (6, 6), (7, 2)}. This deals with a limitation of the Ring

affinity on the Ring communication pattern. The Ring affinity

causes all communication to be in the same direction with that

communication pattern, causing unbalanced load. The Leap2
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Pattern Name
1. 0← 7, 1← 0, 2← 1, ..., 7← 6 Ring
2. 0↔ 1, 2↔ 3, 4↔ 5, 6↔ 7 Recursive doubling 1
3. 0↔ 2, 1↔ 3, 4↔ 6, 5↔ 7 Recursive doubling 2
4. 0↔ 4, 1↔ 5, 2↔ 6, 3↔ 7 Recursive doubling 3
5. 0← 2, 1← 3, 2← 4, 3← 5 Bruck 2

4← 6, 5← 7, 6← 0, 7← 1,
6. 1← 0, 3← 2, 5← 4, 7← 6 Binomial-tree 3

Table 4.1: Communication patterns.

affinity causes adjacent ranks to be two apart in the sequence. This

leads to balanced communication in both directions with the Ring

pattern.

4.4.1 Communication patterns

We considered the communication patterns specified in table 4.1.

We also considered a few communication patterns that have multiple

phases. In each phase, they use one of the simpler patterns mentioned

in table 4.1. They synchronize with a barrier after all the phases are

complete. These patterns typically arise in the following collective

communication calls: (i) binomial-tree based broadcast, (ii) binomial-

tree based scatter, (iii) Bruck algorithm for all-gather, and (iv) recursive

doubling based all-gather.

4.4.2 Experimental Results

Figures 4.8 - 4.13 show the performance of the different affinity

schemes with the communication patterns mentioned in table 4.1. In

these results, we report the performance of the message with the lowest

bandwidth, because this will typically be the bottleneck for an application.
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Figure 4.8: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – Ring pattern.

Figure 4.9: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – first phase of
Recursive Doubling.
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Figure 4.10: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – second phase of
Recursive Doubling.

Figure 4.11: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – third phase of
Recursive Doubling.
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Figure 4.8 shows results with the Ring communication pattern. We

can see that the Overlap affinity gets less than half the performance

of the best patterns. This is not surprising, because this affinity was

developed to give a lower bound on the performance on the ring pattern,

with a large number of overlaps. The Ring affinity does not have any

overlap, but it has a very unbalanced load, with all the transfers going

counter-clockwise, leading to poor performance. The Leap2 pattern

does not have any overlapping paths in each direction, and so it gives

good performance. The Identity affinity has only one explicit overlap in

each direction, which by itself does not degrade performance. However,

it also has a few paths that go half-way across the ring, and these

cause additional overlap whichever way they go, leading to loss in

performance. The EvenOdd affinity has a somewhat similar property;

however, the paths that go half-way across have a direction in which they

do not cause an overlap. It appears that these good paths are taken, and

so the performance is good.

The default affinity is somewhat random. So, we shall not explicitly

give reasons for its performance below. We show results with the default

affinity primarily to demonstrate the improvement in performance that

can be obtained by explicitly specifying the affinity. The randomness in

this affinity also leads to a higher standard deviation than for the other

affinities.

Figure 4.9 shows results with the first phase of Recursive Doubling.

The Overlap pattern has all paths going half-way across. So, there is

extensive overlap, and consequently poor performance. The other four

deterministic patterns yield good performance. The Ring affinity has no

overlap in each direction. The other three have overlaps; however, the
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Figure 4.12: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – second phase of
Bruck algorithm for all-gather.

Figure 4.13: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring – third phase of
Binomial Tree.
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Figure 4.14: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring, for the Particle
transport application : communication time.

transfers can be assigned to distinct rings on the EIB such that there is

no overlap in each ring, leading to good performance.

Figure 4.10 shows results with the second phase of Recursive

Doubling. Leap2 alone has poor performance, because it has all paths

going half-way across. The Ring affinity has overlaps that can be placed

on different rings. The other deterministic patterns do not have any

overlap in the same direction. The third phase of recursive doubling

is shown in figure 4.11. The Ring affinity alone has poor performance,

among the deterministic affinities, because it has all paths going half-

way across. The other deterministic patterns have overlaps that can be

placed on distinct rings, leading to good performance.

Figure 4.12 shows results for the second phase of the Bruck

algorithm1. The EvenOdd affinity performs best, because it does not

1The 1st phase of Bruck algorithm is identical to ring pattern, and the 3rd phase is
identical to the 3rd phase of Recursive Doubling.
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Figure 4.15: Performance of the following affinities: (1) Overlap, (2)
Default, (3) EvenOdd, (4) Identity, (5) Leap2, (6) Ring, for the Particle
transport application : total time.

have any overlap in the same direction. Identity too does not have any

overlap, and gives good performance. However, its performance is a

little below that of EvenOdd. The Ring affinity has all transfers going

in the same direction and gets poor performance. The Overlap affinity

has no overlap, but has unbalanced load, with the counter-clockwise ring

handling six of the eight messages, which reduces its performance. The

Leap2 affinity has several transfers going half-way across, which result

in overlap with either choice of direction, and consequently lead to poor

performance.

All affinities perform well on the third phase of binomial-tree2, shown

in figure 4.13. In the Ring affinity, all messages go in the same direction.

However, since there are only four messages in total, the performance is

still good. All the other affinities have two transfers in each direction,

2The first phase of binomial-tree has only one message, and the second phase has
only two messages. Therefore, there is no contention in these phases.
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and each of these can be placed on a distinct ring, yielding good

performance.

We next consider the performance of the above affinity schemes in

a practical application. This is a Monte Carlo application for particle

transport, which tracks a number of random walkers on each SPE [43].

Each random walker takes a number of steps. A random walker may be

terminated on occasion, causing a load imbalance. In order to keep the

load balanced, we use the diffusion scheme, in which a certain fraction

of the random walkers on each SPE is transferred to a neighbor after

each step. SPE i considers SPEs i − 1 (modulo N) and i + 1 (modulo

N) as its neighbors when we use N SPEs. We can see a factor of two

difference between the communication costs for the best and worst

affinities in figure 4.14. Figure 4.15 shows a difference in total application

performance of over 10% between the best and worst affinities.

The above results for different communication patterns showed a

significant difference in the performance across different affinities. This

indicated to the need for application communication pattern based

mapping of threads to SPEs for obtaining good performance.

4.5 Affinity on a Cell Blade

Communication on a Cell Blade is asymmetric, with around 30 GB/s

theoretically possible from Cell 0 to Cell 1, and around 20 GB/s from Cell

1 to Cell 0. However, as shown in table 4.2, communication between a

single pair of SPEs on different processors of a Blade yields bandwidth

much below this theoretical limit3. In fact, this limit is not reached even

when multiple SPEs communicate, for messages of size up to 64 KB each.

3This result is consistent with those presented in [40] for the QS21 Blade.
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Processor Processor Bandwidth Bandwidth
1 to 0 0 to 1 1 to 0 0 to 1

1 0 3.8 GB/s
0 1 5.9 GB/s
1 1 3.8 GB/s 5.9 GB/s
2 2 3.4 GB/s 5.0 GB/s
3 3 2.8 GB/s 3.6 GB/s
4 4 2.6 GB/s 2.7 GB/s
5 5 2.0 GB/s 2.0 GB/s
6 6 1.6 GB/s 1.6 GB/s
7 7 1.3 GB/s 1.3 GB/s
8 8 1.2 GB/s 1.2 GB/s

Table 4.2: Performance of each message for different numbers of SPEs
communicating simultaneously across processors on a Cell Blade with
64 KB messages each.

Affinity Bandwidth
Identity 3.8 GB/s
EvenOdd 3.5 GB/s
Ring 3.9 GB/s
Worst case 1.3 GB/s

Table 4.3: Performance for different affinities on a Cell Blade (16 SPEs)
for 64 KB messages with the Ring communication pattern.
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As shown above, the bandwidth attained by messages between SPEs

on different processors is much lower than that between SPEs on the

same processor. So, these messages become the bottleneck in the

communication. In this case, the affinity within each SPE is not as

important as the partitioning of threads amongst the two processors. We

have created a software tool that evaluates each possible partitioning

of the threads amongst the two processors and chooses the one with

the smallest communication volume. This tool takes into account the

asymmetry in the bandwidth between the two processors, and so a

partition sending more data will be placed on processor 0. Table 4.3

shows that such partitioning is more important than the affinity within

each processor. In that figure, the software mentioned above was used

to partition the threads for a ring communication pattern, and certain

affinities studied above were used within each processor. One case,

however, considered a worst-case partitioning where each transfer is

between a pair of SPE on different processors.

4.6 Communication Model

Based on the understanding from the above mentioned experimental

analysis, we have developed a tool with an aim to find the optimal

mapping. The main purpose of creating a quantitative model is that

we can find an optimal affinity for an arbitrary communication pattern,

without being ingenious. The model evaluate all possible affinities other

than the symmetrically similar mappings, and chooses the best among

them. Hence, the model has a computational complexity of (n-1)!/2. The

model was developed based on the following guiding principles:
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• For good performance, the communication load should be

distributed equally across all the four EIB rings.

• Each ring can simultaneously support three data transfers,

provided that the paths for these transfers do not overlap. Model

should look for a mapping, where the paths taken by the messages

do not overlap often.

• The model takes into account the asymmetry in the bandwidth

between two processors, and so a partition sending more data will

be placed on processor 0.

4.6.1 Evaluation of the model

We now evaluate the effectiveness of the model by using it for

determining affinities for some standard communication patterns and

also for the real application. Model’s affinity in the figures denotes

the affinity determined by using the tool. Figure 4.16 shows the

effective bandwidths achieved for the Ring communication pattern

using different mappings. Figure 4.17 shows the effective bandwidths

for the first phase of Recursive Doubling. These results show that the

performance of mapping given by the model is not as good as the

mapping which attains the maximum possible bandwidth, however it is

better than the default mapping.

We next consider the performance of the communication model

on the Monte Carlo application. We can observe from the figures

4.18 and 4.19 that the affinity given by the model results in sub-

optimal performance. This could be due to the fact that the three

guiding principles used in building the model are not sufficient to
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Figure 4.16: Performance with the following mappings: 1) Overlap 2)
Default 3) EvenOdd 4) Identity 5) Ring 6) Model’s affinity.

Figure 4.17: Performance with the following mappings: 1) Overlap 2)
Default 3) EvenOdd 4) Identity 5) Ring 6) Model’s affinity.

accurately represent the communication network (EIB) operation. For

example, we observed a poor bandwidth performance even with three

non overlapping messages between SPEs going in the same direction.
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This occurs when at least two of them are of path length two or more,

and go across the sides of the ring (i.e., through PPE-MIC or BIE-IOIF1 in

figure 4.1). This non intuitive behavior of the non overlapping messages

is not thoroughly included in the model. The traffic to the main memory,

which also goes through the same EIB significantly affecting the inter-

SPE communication, was also not considered in the model.

Figure 4.18: Performance with the following mappings: 1) Overlap 2)
Default 3) EvenOdd 4) Identity 5) Ring 6) Model’s affinity.

Another issue is that in all the experiments, we considered only

messages with equal size. We observed that messages with unequal

sizes results in different behavior in some cases. For example, we

observed that the above noted peculiar behavior of non overlapping

messages does not occur if the messages are of different sizes. We

also assumed symmetry in rotating the affinity, to reduce the number

of affinities tested from 8! to 7!, however, our experiments with some

communication patterns indicated that such symmetry does not exist.

We could modify our model by taking into consideration all these aspects
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Figure 4.19: Performance with the following mappings: 1) Overlap 2)
Default 3) EvenOdd 4) Identity 5) Ring 6) Model’s affinity.

to make it more complete and robust.
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5. Application Specific Topology

Aware Mapping: A Load Bala-

ncing Application

We wish to show that suitable assignment of tasks to cores of a

massively parallel machine can reduce the communication overhead

significantly. We consider a new load balancing algorithm that we

have developed to demonstrate this. We first explain its computation

and communication pattern and then describe how a topology aware

mapping reduces its communication costs.

5.1 Introduction to the Application

Quantum Monte Carlo (QMC) is a class of quantum mechanics-based

methods for electronic structure calculations [45, 46, 47]. These methods

can achieve much higher accuracy than well-established techniques

such as Density Functional Theory (DFT) [48] by directly treating the

quantum-mechanical many-body problem. However, this increase in

accuracy comes at the cost of substantially increased computational

effort. The most common QMC methods are nominally cubic scaling,
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but have a large prefactor, making them several orders of magnitude

more costly than the less-accurate DFT calculation. On the other hand,

QMC can today effectively use the largest parallel machines, with O(105)

processing elements, while DFT can not use these machines routinely.

However, with the expected arrival of machines with orders of magnitude

more processing elements than common today, it is important that all

the key algorithms of QMC are optimal and remain efficient at scale.

Diffusion Monte Carlo (DMC) is the most popular modern QMC

technique for accurate predictions of materials and chemical properties

at zero temperature. It is implemented in software packages such as

CASINO [49], CHAMP [50], QMCPack [51], and QWalk. Unlike some

Monte Carlo approaches, this method is not trivially parallel and requires

communications throughout the computation.

The DMC computation involves a set of random walkers, where each

walker represents a quantum state. At each time step, each walker moves

to a different point in the configuration space, with this move having a

random component. Depending on the energy of the walker in this new

state relative to the average energy of the set of walkers (or a reference

energy related to the average), the walker might be either terminated

or new walkers are created at the same position. Alternatively, weights

may be associated with each walker, and the weights are increased

or decreased appropriately. Over time, this process creates a load

imbalance, and the set of walkers (and any weights) must be re-balanced.

For optimum statistical efficiency, this re-balancing should occur every

single move [52].

DMC is parallelized by distributing the set of walkers over the

available compute cores. The relative cost of load balancing the walkers
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as well as the inefficiency from the statistical fluctuations in walker count

can be minimized if the number of walkers per compute element is

kept large. This approach has typically been used on machines with

thousands to tens of thousands of cores. However, with increasing core

count the total population of walkers is increased. This is undesirable

since (1) there is an equilibration time for each walker that does not

contribute to the final statistics and physical result, (2) it is usually

preferable to simulate walkers for longer times, enabling any long term

trends or correlations to be determined, (3) the amount of memory

per compute element is likely to reduce in future, necessitating smaller

populations per compute element. On the highest-end machines, it is

desirable to use very few walkers (one or two) per compute element and

assign weights to the walkers, instead of adding or subtracting walkers, to

avoid excessively large walker counts and to avoid the large fluctuations

in computational effort that would result from even minor fluctuations

in walker count.

Since load balancing is in principle a synchronous, blocking

operation, requiring communication between all compute elements, it

is important that the load balancing method is highly time efficient and

makes very effective use of the communications network, minimizing

the number and size of messages that must be sent. It is also

desirable that the algorithm is simple to enable optimization of the

messaging for particular networks, and to simplify use of latency hiding

techniques through overlap of computation and communications. We

note that CASINO [49] recently transitioned [53] to using asynchronous

communications and suspect that other codes may use some of these

techniques, but apart from [53], they have not been formally described.
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In this chapter we first discuss our new load balancing algorithm

which can be used to load balance computations involving near identical

independent tasks such as those in DMC (we consider each random

walker a task in the description of our load balancing algorithm). The

algorithm has the interesting feature that each process needs to receive

tasks from at most one other process. We optimize this algorithm

on the peta-flop Jaguar supercomputer and show, using data from the

simulation of the Cr2 molecule, that it improves performance over the

existing load balancing implementation of the QWalk code by up to 30%

on 120,000 cores. Moreover, due to the optimal nature of the algorithm

we expect its utility and effectiveness to increase with the multiple orders

of magnitude increase in compute elements expected in the coming

years.

5.1.1 Load Balancing Model Definitions

Dynamic load balancing methods often consist of the following three

steps. (i) In the flow computation step, we determine the number of

tasks that need to be sent by each process to other processes. (ii) In

the task identification step, we identify the actual tasks that need to be

sent by each process. (iii) In the migration step, the tasks are finally

sent to the desired processes. Since we deal with identical independent

tasks, the second step is not important; any set of tasks can be chosen.

Our algorithm determines the flow (step (i)) such that step (iii) will be

efficient, under certain performance metrics.

We assume that a collection of P processes need to handle a set

of T identical tasks (that is, each task requires the same computation

time), which can be executed independently. Before the load balancing
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phase, the number of tasks with process i, 1 ≤ i ≤ P , is Ti. After load

balancing, each process will have at most dT/P e tasks (we are assuming

that the processors are homogeneous, and therefore process tasks at the

same speed). This redistribution of tasks is accomplished by having each

process i send tij tasks to processes j, 1 ≤ i, j ≤ P , where non-zero values

of tij are determined by our algorithm for flow computation, which we

describe in section 5.3. Of course, most of the tijs should be zero, in

order to reduce the total number of messages sent. In fact, at most P − 1

of the possible P (P − 1) values of tij will be non-zero in our algorithm.

The determination of tijs is made as follows. The processes perform

an “all-gather” operation to collect the number of tasks on each process.

Each process k independently implicitly computes the flow (all non-zero

values of tij, 1 ≤ i, j ≤ P ) using the algorithm in section 5.3, and then

explicitly determines which values of tkj and tjk are non-zero, 1 ≤ j ≤ P .

The algorithm to determine non-zero tijs takes O(P ) time, and is fast

in practice. We wish to minimize the time taken in the actual migration

step, which is performed in a decentralized manner by each process.

In some load balancing algorithms [54], a process may not have all the

data that it needs to send, and so the migration step has to take place

iteratively, with a process sending only data that it has in each iteration.

In contrast, the tijs generated by our algorithm never require sending

more data than a process initially has, and so the migration step can

be completed in one iteration. In fact, no process receives a message

from more than one process, though processes may need to send data

to multiple processes.

The outline of the rest of the chapter is as follows. We summarize

related work in section 5.2. In section 5.3, we describe our algorithm
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for dynamic load balancing. We first describe the algorithm when T

is a multiple of P , which is the ideal case, and then show how the

algorithm can be modified to deal with the situation when T is not a

multiple of P . We then report results of empirical evaluation of our

method and comparisons with an existing QMC dynamic load balancing

implementation, in section 5.4. We finally summarize this chapter in

section 5.5.

5.2 Related Work

Load balancing has been, and continues to be, an important research

issue. Static partitioning techniques try to assign tasks to processes

such that the load is balanced, while minimizing the communication

cost. This problem is NP-hard in most reasonable models, and thus

heuristics are used. Geometric partitioning techniques can be used

when the tasks have coordinate information, which provide a measure of

distance between tasks. Graph based models abstract tasks as weighted

vertices of a graph, with weights representing computational loads

associated with tasks. Edges between vertices represent communication

required, when one task needs information on another task. A variety

of partitioning techniques have been studied, with popular ones being

spectral partitioning [55, 56] and multi-level techniques [57, 58, 59, 60],

and have been available for a while in software such as Chaco and Metis.

Dynamic load balancing schemes start with an existing partition, and

migrate tasks to keep the load balanced, while trying to minimize the

communication cost of the main computation. A task is typically sent

to a process that contains neighbors of the task in the communication

graph, so that the communication cost of the main computation is

55



minimized1. Other schemes make larger changes to the partitions, but

remap the computation such that the cost of migration is small [61].

The diffusion scheme is a simple and well-known scheme sending

data to neighboring processes [62, 63, 64, 65]. Another scheme, proposed

in [54], is also based on sending tasks to neighbors. It is based on

solving a linear system involving the Laplacian of the communication

graph. Both these schemes require the tasks to be arbitrarily divisible

for the load balancing to work. For example, one should be able

to send 0.5 tasks, 0.1 tasks, etc. Modified versions of diffusive type

schemes have also been proposed which remove restrictions on arbitrary

divisibility [66]. Multi-level graph partitioning based dynamic schemes

are also popular [69]. Hyper-graphs generalize graphs using hyper-edges,

which are sets of vertices with cardinality not limited to two. Hyper-

graph based partitioning has also been developed [67]. Software tools,

such as, JOSTLE [68], ParMetis, and Zoltan are available, implementing a

variety of algorithms.

There has been much work performed on load balancing independe-

nt tasks (bag of tasks) in the distributed and heterogeneous computing

fields [70, 71, 72, 73]. Many of the scheduling algorithms try to minimize

the makespan, which can be considered a type of load balancing. They

consider issues such as differing computing power of machines, online

scheduling, etc.

Within the context of QMC and DMC, we are not aware of any

published work specifically focusing on the algorithms used for load

balancing, although optimizations to existing implementations have

been described [53]. Since all QMC codes must perform a load

1When tasks are fairly independent, as in QMC, it is reasonable to model it as a
complete graph, indicating that a task can be migrated to any process.
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balancing step, each must have a reasonably efficient load balancing

implementation, at least for modest numbers of compute elements.

However, the methods used have not been formally described and we

do not believe any existing methods share the optimality features of the

algorithm described below.

5.3 The Alias Method Based Algorithm for Dynamic Load

Balancing

Our algorithm is motivated by the alias method for generating

samples from discrete random distributions. We therefore refer to our

algorithm as the Alias method for dynamic load balancing. There is

no randomness in our algorithm. It is, rather, based on the following

observation used in a deterministic pre-processing step of the alias

method for the generation of discrete random variables. If we have P

bins containing kP objects in total, then it is possible to re-distribute

the objects so that each bin receives objects from at most one other

bin, and the number of objects in each bin, after the redistribution, is

exactly k. Walker [75] showed how this can be accomplished inO(P logP )

time. This time was reduced to O(P ) by [74] using auxiliary arrays. In

Algorithm 1 below, we describe our in-place implementation that does

not use auxiliary arrays, except for storing a permutation vector.

We assume that the input to Algorithm 1 is an integer array A

containing the number of objects in each bin. Given A, we can compute

k easily in O(P ) time, and will also partition it around k in O(P ) time so

that all entries with A[i] < k occur before any entry with A[j] > k. We will

assume that A[i] 6= k, because other bins do not need to be considered
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– they have the correct number of elements already, and our algorithm

does not require redistribution of objects to or from a bin that has k

objects. If we store the permutation while performing the partitioning,

then the actual bin numbers can easily be recovered after Algorithm 1 is

completed. This algorithm runs only with P ≥ 2, because otherwise all

the bins already have k elements each. We assume that a pre-processing

step has already accomplished the above requirements in O(P ) time.

Algorithm 1:

Input: An array of non-negative integers A[1 · · ·P ] and an integer

k > 0, such that
∑P

i=1 A[i] = kP , entries of A have been partitioned

around k, and P ≥ 2. A[i] gives the number of objects in bin i, and

A[i] 6= k.

Output: Arrays S[1 · · ·P ] and W [1 · · ·P ], where S[i] gives the bin from

which bin i should get W [i] objects, if S[i] 6= 0.

Algorithm:

1. Initialize arrays S and W to all zeros.

2. s← 1.

3. l← min{j|A[j] > k}.

4. while l > s

(a) S[s]← l.

(b) W [s]← k − A[s].

(c) A[l]← A[l]−W [s].

(d) if A[l] < k then

i. l← l + 1.
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(e) s← s+ 1.

It is straightforward to see the correctness of Algorithm 1 based on

the following loop invariants at the beginning of each iteration in step

4: (i) A[i] ≥ k, l ≤ i ≤ P , (ii) 0 ≤ A[i] < k, s ≤ i ≤ l − 1, and (iii)

A[i] + W [i] = k, 1 ≤ i ≤ s − 1. Since bin l needs to provide at most k

objects to bin s, it has a sufficient number of objects available, and also

as a consequence of the same fact, A[l] will not become negative after

giving W [s] objects to bin s. The last clause of the loop invariant proves

that all the bins will have k objects after the redistribution. We do not

formally prove the loop invariants, since they are straightforward.

In order to evaluate the time complexity, note that in the while loop

in step 4, l and s can never exceed P . Furthermore, each iteration of

the loop takes constant time, and s is incremented once each iteration.

Therefore, the time complexity of the while loop is O(P ). Step 3 can easily

be accomplished in O(P ) time. Therefore the time complexity of this

algorithm is O(P ).

Load balancing whenT is a multiple ofP : Using Algorithm 1, a process

can compute tijs as follows, if we associate each bin with a process2 and

the number of objects with the number of tasks:

tS[i]i ← W [i], S[i] 6= 0. (5.1)

All other tijs are zero. Of course, one needs to apply the permutation

obtained from the partitioning before performing this assignment. Note

2In our algorithm, processes that already have a balanced load do not participate
in the redistribution of tasks to balance the load. Therefore, we use P to denote the
number of processes with unbalanced loads in the remainder of the theoretical analysis.
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that the loop invariant mentioned for Algorithm 1 also shows that a

process always has sufficient data to send to those that it needs to; it need

not wait to receive data from any other process in order to have sufficient

data to send, unlike some other dynamic load balancing algorithms [54].

Load balancing when T is not necessarily a multiple of P : The above

case considers the situation when the total number of tasks is a multiple

of the total number of processes. We can also handle the situation when

this is not true, using the following modification. If there are T tasks

and P processes, then let k = dT/P e. For balanced load, no process

should have more than k tasks. We modify the earlier scheme by adding

kP − T fake “phantom” tasks. This can be performed conceptually by

incrementingA[i]by one for kP−T processes before running Algorithm 1

(and even before the pre-processing steps involving removing of entries

with A[i] = k and partitioning). The total number of tasks, including

the phantom ones, is now kP , which is a multiple of P . So Algorithm

1 can be used on this, yielding k tasks per process. Some of these are

phantom tasks, and so the number of tasks is at most k, rather than

exactly k. We can account for the phantom tasks by modifying the array S

as follows, after completion of Algorithm 1. Let F be the set of processes

to which the fake phantom tasks were added initially (by incrementing

their A entry). For each j ∈ F , define rj = min{i|S[i] = j}. If rj exists,

then set W [rj] ← W [rj] − 1. This is conceptually equivalent to making

each process that initially had a phantom task to send this task to the

first process to whom it sends anything. Note that on completion of the

algorithm, no process has more than two phantom tasks, because in the

worst case, it had one initially, and then received one more. So the total
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number of tasks on any process after redistribution will vary between

k − 2 to k. The load is still balanced, because we only require that the

maximum load not exceed dT/P e after the redistribution phase3. This

modified algorithm can be implemented with the same time complexity

as the original algorithm.

5.4 Empirical Results

5.4.1 Experimental Setup

The experimental platform is the Cray XT5 Jaguar supercomputer

at ORNL. In running the experiments, we have two options regarding

the number of processes per node. We can either run one process

per node or one process per core. QMC software packages were

originally designed to run one MPI process per core. The trend now

is toward one MPI process per node, with OpenMP threads handling

separate random walkers on each core. Qmcpack already has this

hybrid parallelization implemented, and some of the other packages are

expected to have it implemented in the near future. We assume such a

hybrid parallelization, and have one MPI process per node involved in

the load balancing step.

In our experiments, we consider a granularity of 24 random walkers

per node, that is, 2 per core. This is a level of granularity that we desire

for QMC computations in the near future. Such scalability is currently

limited by the periodic collective communication and load balancing

that is required.

3In our implementation, the phantom tasks are not actually sent, and they do not
even exist in memory.

61



Both these are related in the following manner. The first step leads

to termination or creation of new walkers, which in turn requires load

balancing. There is some flexibility in the creation and termination of

random walkers. Ideally, the load balancing results both in reduced wall

clock time per step (of all walkers) and an improved statistical efficiency.

We note that there is some flexibility in the creation and termination

of random walkers. Ideally the load balancing is performed after every

time step, to obtain the best statistical error and to minimize systematic

errors due to the finite sized walker population. However, the overhead

on large parallel machines can hinder this, and so one may perform

them every few iterations instead. Our goal is to reduce these overheads

so that these steps can be performed after every time step. For large

physical systems where the computational cost per step is very high,

these overheads may be relatively small compared with the computation

cost. However, for small to moderate sized physical systems, these

overheads can be large, and we wish to efficiently apply QMC even to

small physical systems on the largest parallel computational systems.

We consider a small system, a Cr2 molecule, with an accurate

multideterminant trial wavefunction. The use of multideterminants

increases computational time over the use of a single determinant.

However, it provides greater accuracy, which we desire when performing

a large run. The computation time per time step per walker is then

around 0.1 seconds. The two collective steps mentioned above consume

less than 10% of the total time on a large machine (the first step does

not involve just collective communication, but also involves other global

decisions, such as branching). Even then, on 100,000 cores, this is

equivalent to wasting 10,000 cores. We can expect these collective steps
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to consume a larger fraction of time at even greater scale.

In evaluating our load balancing algorithm, we used samples from the

load distribution observed in a long run of the above physical system.

Depending on the details of the calculations, the amount of data to be

transferred for each random walker can vary from 672B to 32KB for Cr2.

We compared our algorithm against the load balancing implementation

in QWalk. The algorithm used in QWalk is optimal in the maximum

number of tasks sent by any processor and in the total number of tasks

sent by any processor, but not on the maximum or total number of

messages sent; these are bounded by the maximum imbalance and the

sum of load imbalances respectively. One may, therefore, expect that

algorithm to be more efficient than ours for a sufficiently large task sizes,

and ours to be better for small sizes. Also, the time taken for the flow

computation in QWalk is O(P + total load), where P is the number of

nodes.

Each experiment involved 11 runs. As we show later, inter-job

contention on the network can affect the performance. In order to

reduce its impact, we ignore the results of the run with the largest total

time. In order to avoid bias in the result, we also drop the result of the

run with the smallest time. For a given number of nodes, all runs for all

task sizes for both algorithms are run on the same set of nodes, with one

exception mentioned later.

5.4.2 Results

Our testing showed that the time taken for the alias method is linear

in the number of nodes, as expected theoretically (not shown). The

maximum time taken by any node can be considered a measure of the
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performance of the algorithm, because the slowest processor limits the

performance. Figure 5.1 shows the average, over all the runs, of the

maximum time for the following components of the algorithm. (We

refer to it in the figure caption as the ’basic alias method’, in order to

differentiate it from a more optimized implementation described later.)

Note that the maximum for each component may occur on different

cores, and so the maximum total time for the algorithm over all the cores

may be less than the sum of the maximum times of each component.

We can see that communication operations consume much of the time,

and the flow computation is not the dominant factor, even with a

large number of nodes. The MPI Isend and MPI Irecv operations take

little time. However MPI Waitall and MPI Allgather consume a large

fraction of the time. It may be possible to overlap computation with

communication to reduce the wait time. However, the all-gather time

is still a large fraction of the total time.

In interpreting the plot in figure 5.1, one needs to note that it is drawn

on a semi-log scale. The increase in time, which appears exponential

with the number of cores, is not really so. A linear relationship would

appear exponential on a semi-log scale. On the other hand, one would

really expect a sub-linear relationship for the communication cost. The

all-gather would increase sub-linearly under common communication

cost models. In the absence of contention, the cost of data transfer need

not increase with the number of cores for the problem considered here;

the maximum imbalance is 4, each node has 6 communication links, and

so, in principle, if the processes are ideally ordered, then it is possible for

data to travel on different links to nearby neighbors which would be in

need of tasks. The communication time can, thus, be held constant. We
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Figure 5.1: Maximum time taken for different components of the basic
Alias method with task size 8KB.

can see from this figure that the communication cost (essentially the wait

time) does increase significantly. The communication time for 12,000

cores is 2-3 times the time without contention, and the time with 120,000

cores is 4-6 times that without contention. The cause for contention is

that the routing on this machine uses fixed paths between pairs of nodes,

and sends data along the x coordinate of the torus, in the direction of the

shortest distance, then in the y direction, and finally in the z direction4.

Multiple messages may need to share a link, which causes contention.

In fig. 5.2, we consider the mean value of the different components

in each run, and plot the average of this over all runs. We can see that

the wait time is very small. The reason for this is that many of the nodes

have balanced loads. The limiting factor for the load balancing algorithm

is the few nodes with large work.

4Personal communication from James Buchanan, OLCF, ORNL.
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Figure 5.2: Mean time taken for different components of the basic Alias
method with task size 8KB.

We next optimize the alias method to reduce contention. We would

like nodes to send data to nearby nodes. We used a heuristic to

accomplish this. We obtained the mapping of node IDs to x, y, and z

coordinates on the 3-D torus. We also found a space-filling Hilbert curve

that traverses these nodes. (A space-filling curve tries to order nodes so

that nearby nodes are close by on the curve.) At run time, we obtain

the node IDs, and create a new communicator that ranks the nodes

according to their relative position on the space-filling curve. We next

changed the partitioning algorithm so that it preserves the order of the

space-filling curve in each partition. We also made slight changes to the

alias algorithm so that it tries to match nodes based on their order in the

space filling curve. The creation of a new communicator is performed

only once, and the last two steps don’t have any significant impact on

the time taken by the alias method. Thus, the improved algorithm is no
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Figure 5.3: Comparison of optimized Alias method against the basic
method with task size 8KB.

slower than the basic algorithm. Figure 5.3 shows that the optimized

algorithm has much better performance than the basic algorithm for

large core counts. It is close to 30% better with 120,000 cores, and 15-

20% better with 1,200 and 12,000 cores.

We next analyze the reason for the improved performance. Figure 5.4

considers the average over all runs for the maximum time taken by

different components of the algorithm. As with the analysis of the

basic algorithm, the total maximum time is smaller than the sum of the

maximum times of each component. We can see that the wait time is

smaller than that of the basic algorithm shown in figure 5.1, which was

the purpose of this optimization. The improvement is around 60% with

120,000 cores and 20% on 12,000 cores. Surprisingly, the MPI Allgather

time also reduces by around 30% on 120,000 cores and 20% on 12,000

cores. It appears that the MPI implementation does not optimize for the
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Figure 5.4: Maximum time taken for different components of the
optimized Alias method with task size 8KB.

topology of the nodes that are actually allocated for a run, and instead

uses process ranks. The ranks specified by this algorithm happens to

be good for the MPI Allgather algorithm. This improvement depends

on the nodes allocated. In the above experiment, with 120,000 cores,

the set of allocated nodes consisted of six connected components. In

a different run, we obtained one single connected component. The

use of MPI Allgather with the optimized algorithm did not provide any

benefit in that case. It is possible that the MPI implementation optimized

its communication routines under the assumption of a single large

piece of the torus. When this assumption is not satisfied, perhaps its

performance is not that good.

The performance gains are smaller with smaller core counts, which

can be explained by the following observations. Figure 1.1 shows the

node allocation for the 12,000 core run. We can see that we get a large
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Figure 5.5: Comparison of the optimized Alias algorithm against the
existing QWalk implementation with task size 672B.

number of connected components. Thus, inter-job contention can play

an important role. Each component is also not shaped close to a cube.

Instead, we have several lines and 2-D planes, long in the z direction.

This makes it hard to avoid intra-job contention, because each node is

effectively using fewer links, making contention for links more likely. It

is perhaps worthwhile to consider improvements to the node allocation

policy. For 120 and 1,200 cores, typically each connected component

is a line (or a ring, due to the wrap-around connections), which would

lead to contention if there were several messages sent. However, the

number of nodes with imbalance is very small, and contention does not

appear to affect performance in the load migration phase. Consequently,

improvement in performance is limited to that obtained from the all-

gather operation.

We next compare the optimized alias implementation against the
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Figure 5.6: Comparison of the optimized Alias algorithm against the
existing QWalk implementation with task size 2KB.

QWalk implementation in figures 5.5, 5.6, and 5.7. The new algorithm

improves the performance by up to 30-35% in some cases, and is typically

much better for large numbers of cores. The improved performance is

often due to improvement in different components of the algorithm and

its implementation: all-gather, task migration communication cost, and

to a smaller extent, time for the flow computation. We can see from

these figures that the time for 2KB tasks is higher on 120,000 cores than

that for larger messages, especially with the QWalk algorithm. This was

a consistent trend across the runs with QWalk. The higher time with

the Alias method is primarily the result of a couple of runs taking much

larger time than the others. These could, perhaps, be due to inter-job

contention. We did not ignore this data as an outlier, because if such a

phenomenon occurs 20% of the time, then we believe that we need to

consider it as a reality of the computations in realistic conditions.
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Figure 5.7: Comparison of the Alias algorithm with the existing QWalk
implementation with task size 32KB.

We know that the alias method is optimal in the maximum number

of messages received by any node, and found (not shown) that QWalk

requires an increasing maximum number of receives with increasing

core count. However, when we measure the mean number of tasks sent

per core, figure 5.8, we find that QWalk is optimal. The alias method is

approximately a factor of two worse in terms of the number of messages

sent. Although we do not see this in tests with realistic message sizes, for

sufficiently large messages it is clear that there must be a cross-over in

the preferred load balancing algorithm. At some point the existing QWalk

algorithm will be preferred since the communications will be bandwidth

bound.
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Figure 5.8: Mean number of tasks sent per core.

5.5 Summary

We showed that suitable assignment of tasks to cores on large

machines such as Jaguar reduced the communication overhead

significantly. We demonstrated this using a new load balancing

algorithm that we have developed. We optimized the implementation

with a selective mapping determined based on the allocation topology

and communication pattern, and demonstrated that it has better

performance due to reduced network contention. The relative

performance of the algorithm to existing methods is expected to increase

with the increased compute element count of upcoming machines.
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6. Optimization of the Hop-Byte

Metric

6.1 Problem Formulation

Figure 6.1: Node graph.

We model the problem using two graphs. The node graph G, such as

in figure 6.1 is an undirected graph with vertices representing the nodes

of the machine that have been allocated to the job submitted, and edge

weights eij representing the number of hops between the vertices i and

j linked by that edge. The hops can be determined from the machine

topology information and knowledge of the nodes actually allocated.

These can usually be obtained on most supercomputing systems. We

assume that static routing is used, which is fairly common.

The task graph G′ = (V ′, E ′), such as in figure 6.2, represents the
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Figure 6.2: Task graph.

submitted job. Each vertex represents a process running on a node and

edge weight e′ij represents the total sizes of messages, in both directions,

between vertices i and j linked by that edge. The number of vertices in

this graph must equal the number in the node graph. If there are more

tasks than nodes, then a graph partitioning algorithm can be applied to

aggregate tasks so that this condition is satisfied.

Minimizing the hop-bytes then is the following quadratic assignment

problem, where xij = 1 implies that task j is assigned to node i.

min
∑
ij

∑
kl

eike
′
jlxijxkl, (6.1)

subject to:

∑
i

xij = 1, for all j

∑
j

xij = 1, for all i

xij in {0,1}
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This is a well known NP hard problem and considered hard to

approximate, though there are reasonable approximation algorithms

[78] for dense instances. The exact solution can be found for small

instances using branch and bound (bounds are used to reduce the search

space). A couple of popular lower bounds are the elimination bound and

the Gilmore-Lawler bound. We use the exact solution for small instances,

and also the bounds for medium size instances, in order to evaluate the

effectiveness of our heuristics.

6.2 Mapping Heuristics

6.2.1 GRASP Heuristic

Several heuristics have been proposed for QAP, based on meta-

heuristics such as simulated annealing, tabu search, ant colony

optimization, and greedy randomized adaptive search procedures

(GRASP). GRASP is based on generating several random initial solutions,

finding local optima close to each one, and choosing the best one. We

use a GRASP heuristic for QAP from [77].

6.2.2 MAHD and Exhaustive MAHD Heuristics

We first describe our faster heuristic, Minimum Average Hop Distance

(MAHD), in Algorithm 1 below. It improves on the following limitation of

the GGE [13] heuristic. GGE replaces step 7 of algorithm 1 with a strategy

that places the task on the node closest to its most recently mapped

neighbor. We would ideally like this task to be close to all its neighbors.

MHT [12] addresses this by placing the node closest to the centroid of all

previously mapped neighbors. On the other hand MHT works only on
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meshes. Our algorithm works on a general graph, and places the task,

in this step, on the node that has the minimum average hop distance

to nodes on which all previously mapped neighbors of the task have

been mapped. MHT also selects a random node on which to place the

initial task. We intuitively expect a task with the maximum number of

neighbors to be a “central” vertex in a graph, and so try to map it to a

node which is “central” in its graph. We do this by placing it on the node

with the minimum average hop distance to any other vertex. The first

task selected may not actually be “central” (for instance, in the sense

centrality measures such as betweenness centrality). We introduce an

Exhaustive MAHD (EMAHD) heuristic to see if a better choice of initial

vertex is likely to lead to significant improvement in mapping quality.

In this heuristic, we try all possible nodes as starting vertices, and then

choose the one that yields the best mapping quality.

Algorithm 1 MAHD(G, G′)
1. s = vertex in G with maximum number of neighbors
2. p = vertex in G′ with minimum average hop distance to all other

vertices
3. Assign task s to node p
4. Insert all neighbors of s into max-heap H, where the heap is

organized by the number of neighbors
5. while H in not empty do
6. s = H.pop();
7. s is mapped to a node with minimum average hop distance to

processes hosting mapped neighbors of s;
8. Insert neighbors of s into H if they are not in H and have not been

mapped;
9. end while
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6.2.3 Hybrid Heuristic with Graph Partitioning

If |V ′| is too large for GRASP to be feasible, then we use the following

hybrid heuristic. We partition graphs G and G′ into partitions of size

p each. Any graph partitioning algorithm can be used. We use a

multilevel heuristic available in parMetis. We create graphs H and H ′

corresponding to the partitions of G and G′ respectively. In H, each

vertex corresponds to a partition in G and in H ′, each vertex corresponds

to a partition in G′. Each edge in H has weight corresponding to the

average hops from nodes between the two partitions linked by that edge.

Each edge in H ′ has weight corresponding to the total message sizes

between the two partitions linked by that edge. A mapping of partitions

in H ′ to partitions in H is performed using GRASP and mapping of tasks

to nodes within each partitions is again performed using GRASP with

corresponding subgraphs of G and G′.

6.3 Evaluation of Heuristics

6.3.1 Experimental Platform

The experimental platform is the Cray XT5 Kraken supercomputer at

NICS. We used the native Cray compiler with optimization flag “ − O3”.

The QAP codes were obtained from QAPlib (http://www.opt.math.tu-

graz.ac.at/qaplib/codes.html), which includes codes from a variety of

sources. A branch and bound algorithm was used for the exact solution,

the Gilmore-Lawler bound for a lower bound1 and a dense GRASP

heuristic for larger problem sizes.

1The Gilmore-Lawler bound performed better than the elimination bound for large
problem sizes.
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Three standard collective communication patterns used in MPI

implementations – Recursive Doubling, Bruck, and Binomial Tree – were

studied. We also used the following three irregular communication

patterns. A 3D Spectral element elastic wave modeling problem

(3DSpec) and a 2D PDE (Aug2dc) from the University of Florida sparse

matrix collection, and a 2D unstructured mesh pattern (Mesh) from the

ParFUM framework available in CHARM++ library.

OSU MPI micro benchmark suite was used for the empirical tests

on the Kraken machine to observe the impact of the heuristic based

mapping on MPI collective calls.

6.3.2 Experimental Results

Figures 6.3, 6.4 compare the default mapping, GRASP result, and

the Gilmore-Lawler bound for small problem sizes. The quality (hop-

byte metric value) is divided by that for the exact solution to yield a

normalized quality.

ProblemSize GRASP EMAHD Default GGE MAHD
8 1.43 1.48 2.22 2.18 1.83

16 2.98 3.76 5.36 3.88 4.02
32 2.94 4.05 5.88 5.19 4.30
64 4.34 4.72 8.19 6.04 5.43

100 2.56 2.74 3.84 3.86 3.16
128 2.92 2.91 3.49 4.21 3.51
144 2.73 2.61 4.25 4.16 3.22
192 3.73 3.56 5.12 5.37 4.06
200 3.14 2.77 4.30 4.05 2.83
216 1.84 1.73 2.99 2.83 1.90
250 3.66 3.39 5.50 5.37 3.45
300 3.42 3.29 5.66 5.16 3.73

Table 6.1: Hops per byte.
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Figure 6.3: Quality of solutions on the Recursive Doubling pattern for
small problem sizes.
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Figure 6.4: Quality of solutions on the Binomial Tree pattern for small
problem sizes.
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We can see that the GRASP is close to the exact solution for these

problem sizes. We also note that the lower bound is a little over the half

of the exact solutions toward the higher end of this size range. Similar

trend were observed for the other patterns, which are not shown here.

The table 6.1 compares the hops per byte metric value for different

problem sizes while mapping the Mesh pattern. Figures 6.5-6.10

compare the heuristics for medium problem sizes. The quality is

normalized against the default solution, because computing with

the exact solution is not feasible. These figures, therefore, show

improvement over the default mapping.
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Figure 6.5: Quality of solution on the Recursive Doubling pattern for
medium problem sizes.

We can see that the GRASP heuristic is consistently better than the

default and the GGE heuristic, while MAHD and EMAHD are sometimes

comparable to GRASP. EMAHD is often much better than MAHD,

suggesting that a better choice of the initial vertex has potential to make
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Figure 6.6: Quality of solution on the Binomial Tree pattern for medium
problem sizes.
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Figure 6.7: Quality of solution on the Bruck pattern for medium problem
sizes.
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Figure 6.8: Quality of solution on the 3D Spectral pattern for medium
problem sizes.
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Figure 6.9: Quality of solution on the Aug2D pattern for medium problem
sizes.
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Figure 6.10: Quality of solution on the Mesh pattern for medium problem
sizes.

significant improvement to MAHD.

However, the time taken by GRASP and EMAHD are significantly

larger than that for GGE or MAHD, as shown in figure 6.11. Consequently,

they are more suited to static communication patterns. Since EMAHD

typically does not produce better quality than GRASP either, it does not

appear very useful. On the other hand, its quality suggests that if a good

starting vertex can be found for MAHD without much overhead, then

MAHD’s quality can be improved without increasing its run time. When

the communication pattern changes dynamically, then MAHD is a better

alternative to the above two schemes and also to GGE. It is as fast as

GGE, while producing mappings of better quality. Its speed also makes it

feasible to use it dynamically, while GRASP is too slow.

An alternative to MAHD for large problem sizes with dynamic

communication patterns is the hybrid algorithm. Preliminary results
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Figure 6.11: Comparison of time taken by the heuristics.

on 1000 nodes with partitions of size 125 are shown in figure 6.12.

The hybrid algorithm performs better than the default and GGE with

both communication patterns. It is better than MAHD and EMAHD

for Recursive Doubling, but is worse with the Binomial Tree. The

Binomial Tree has less communication volume than Recursive Doubling,

and further experiments are necessary to check if the hybrid algorithm

tends to perform better when the communication volume is larger.

We note that even for medium sized problems, GRASP (which is the

underlying heuristic behind the hybrid algorithm), was comparable with

EMAHD and MAHD for the Binomial Tree, but much better for Recursive

Doubling. The hybrid scheme produces a further reduction in quality,

which makes it worse than MAHD and EMAHD for Binomial Tree, but

since GRASP is much better for Recursive Doubling, the hybrid algorithm

is better than MAHD and EMAHD for it, though by a smaller margin.
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As the number of partitions increases, the hybrid algorithms relative

advantage decreases, as can be seen in figure 6.132, which is based on

16 partitions of size 125 each.

  0.0

  0.2

  0.4

  0.6

  0.8

  1.0

RecursiveDoubling Binomial

N
or

m
al

iz
ed

 M
ap

pi
ng

 Q
ua

lit
y

GraphPartition
MAHD
EMAHD
GraphEmbed

Figure 6.12: Comparison of heuristics on 1000 nodes (12,000 cores).
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Figure 6.13: Comparison of heuristics on 2000 nodes (24,000 cores).

We next evaluate how well GRASP compares with the lower bound

2It was not feasible to use EMAHD for 2000 nodes due to the time required by it.
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for medium problem sizes. Figures 6.14-6.19 show that GRASP is around

a factor of two from the Gilmore-Lawler bound. As shown earlier, the

above bound was usually a little higher than half the exact solution for

small problem sizes, and did not get tighter with increased sizes. These

results, therefore, suggest that GRASP is close to the optimal solution.
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Figure 6.14: Quality of solution on the Recursive Doubling pattern
compared with a lower bound.

Finally, we wish to verify if improving the hop-byte metric actually

improves the communication performance. Preliminary studies with

Recursive Doubling on the MPI Allgather implementation with 1KB

messages on problems with 128 nodes showed that GRASP and EMAHD

are about 25% faster than the default and 20% faster than GGE. The

improvement over the default is significant, though not as large as that

indicated by the hop-byte metric, because that metric is only an indirect

indication of the quality of the mapping. However, it does suggest that

optimizing the hop-byte metric leads to improved performance.
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Figure 6.15: Quality of solution on the Binomial Tree pattern compared
with a lower bound.
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Figure 6.16: Quality of solution on the Bruck pattern compared with a
lower bound.
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Figure 6.17: Quality of solution on the 3D Spectral pattern compared with
a lower bound.
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Figure 6.18: Quality of solution on the Aug2D pattern compared with a
lower bound.
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Figure 6.19: Quality of solution on the Mesh pattern compared with a
lower bound.

6.4 Summary

We have shown that optimizing for the hop-bytes metric using the

GRASP heuristic leads to a better mapping than existing methods, which

typically use some metric just to evaluate the heuristic, rather than to

guide the optimization. We have evaluated the heuristic on realistic

node allocations, which typically consist of many disjoint connected

components. GRASP performs better than GGE, which is among the best

prior heuristics that can be applied to arbitrary graphs with arbitrary

communication patterns, and performs much better than the default

mapping. In fact, GRASP is optimal for small problem sizes. Comparison

with the lower bound suggests that GRASP may be close to optimal

for medium problem sizes too. However, it does not scale well with

problem size and is infeasible for large graphs. We proposed two
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solutions for this. One is the MAHD algorithm and the other is a

hybrid algorithm. The former is fast and reasonably good, while the

latter is sometimes better, but much slower than MAHD. For static

communication patterns on medium sized graphs, GRASP would be the

best option. For large problems with static communication patterns,

the hybrid approach would be a good alternative, especially when the

communication volume is large. However, MAHD too can be effective.

For dynamic communication patterns, MAHD is the best alternative.

In fact, results with EMAHD suggest that if a good starting vertex

can be found, then MAHD may be competitive even for many static

patterns. MAHD takes roughly the same time as GGE, but consistently

outperforms it. Preliminary experiments on MPI also suggest that

optimizing for the hop-byte metric improves the actual MPI collective

communication latency, though not to the extent predicted by this

metric. This is reasonable, because the metric does not directly account

for the congestion bottleneck.

One direction for future work is in reducing the time taken by the

GRASP heuristic. GRASP is a general solution strategy, rather than a

specific implementation. The particular implementation that we used

is for a general QAP problem. We plan to develop an implementation

specific to our mapping problem. For instance, solutions generated

by the fast heuristics can be used as starting points in GRASP, thereby

reducing the search space. Furthermore, we used a dense GRASP

implementation because the node graph is complete. We can remove

edges with heavy weights (corresponding to nodes that are far away)

so that a sparse algorithm can be used. A different direction lies in

optimizing for a different metric. The actual bottleneck is contention on
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specific links. We have posed the problem of minimizing the maximum

contention as an integer programming problem, and are developing

heuristics to solve it. Some of the preliminary results are presented in

the next chapter.
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7. Maximum Contention Metric

7.1 Problem Formulation

Another practical metric that can be used to evaluate the quality of

mapping is the maximum contention metric. The hop-bytes metric gives

an indication of the average communication load on each link in the

network. However, in reality, the communication bottleneck is normally

the bottleneck link, having the largest traffic on it. We will ignore

inter-job contention for the time being, and consider only intra job

contention. Our goal is to assign tasks to nodes in order to minimize the

maximum traffic on any given link. Routing plays an important role in

the contention experienced in the network; topology information is not

sufficient. We will assume static routing, and that we have information

on the links traversed by messages from any pair of nodes.

We can pose this problem with a linear objective function subject to

quadratic constraints, as shown below. Here, dmijkl can be computed as

the size of the message from task i to task k, if the route from node j to

node l uses link m, and zero if the route does not use that link. And t is

the load on the link with maximum load. The constraint (t ≥ ym) ensures

that t is as high as the load on the link with maximum load. The other

constraints ensure the assignment of each task to a distinct node. This
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problem too is NP hard [79]. The solution approaches to arrive at an

approximate solution and their evaluation are discussed next.

min t, (7.1)

subject to:

t >= ym, for all m

ym =
∑
ijkl

dmijkl xij xkl, for all m

∑
i

xij = 1, for all j

∑
j

xij = 1, for all i

xij in {0,1}

7.2 Heuristics and Their Evaluation

The heuristic solutions used for equation 6.1 can as well be used

for this problem. Evaluate each of the heuristic with the maximum

contention metric, and choose the best one. Our experimental results

showed that EMAHD outperforms all the other heuristics for this metric.

The next step in improving the solution is to perform a local

optimization on the mapping resulted with the EMAHD heuristic. The

local optimization involves choosing pairs of tasks that can be swapped

such that metric value improves. The results for this are referred

in the figures and table as ’LocalOpt’. The table 7.2 compares the

maximum contention metric value for different node allocation sizes

while mapping the Mesh pattern.
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ProblemSize Default GGE MAHD GRASP EMAHD LocalOpt
4 97 73 62 73 62 62
8 144 104 162 151 113 87

16 168 233 144 170 128 115
32 307 267 285 338 228 149
64 576 413 634 484 396 193

100 473 679 501 514 376 181
128 481 457 455 522 406 227
144 481 449 510 481 377 221
192 567 565 538 560 449 277
200 622 576 457 416 300 201
216 567 575 632 632 464 256

Table 7.1: Load on the maximum congested link.
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Figure 7.1: Quality of solution on the Recursive Doubling pattern for
medium problem sizes.

Figures 7.1 to 7.6 compare heuristics for this metric on medium

problem sizes. The quality is normalized against the default mapping

solution. All the figures show that EMAHD consistently outperforms all

the other heuristics. And idea of using the local optimization to improve
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Figure 7.2: Quality of solution on the Binomial Tree pattern for medium
problem sizes.

the EMHAD solution gives significantly better results. We can see that

though GRASP outperformed other heuristics for the hop-byte metric,

here EMAHD consistently gives better results over GRASP. The figure 7.3

shows that for the Bruck pattern, for most of the problem sizes, all the

heuristics other than EMHAD provides mappings that worse than the

default mapping.

The results show that EMAHD with local optimization gives a

mapping quality that 100% to 120% better than the default mapping

quality.

The above two approaches of solving equation 7.1 do not use the

problem formulation. We will work on this by formulating this problem

as a linear programming problem. This will produce a floating point

solution, which we should be discretized in some reasonable manner

to produce a final assignment. For example, we can use maximum
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Figure 7.3: Quality of solution on the Bruck pattern for medium problem
sizes.
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Figure 7.4: Quality of solution on the 3D Spectral pattern for medium
problem sizes.
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Figure 7.5: Quality of solution on the Aug2D pattern for medium problem
sizes.
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Figure 7.6: Quality of solution on the Mesh pattern for medium problem
sizes.
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Heuristic Message Size % of Improvement
EMAHD for Hop-bytes 128K 18.5

EMAHD for Hop-byte with local opt. 128K 24.1
EMAHD for Maximum contention 128K 23.7

Table 7.2: Percentage of improvement in bandwidth due to heuristic
mappings over the bandwidth due to default mapping on 512 nodes.

matching on the obtained values. The solution to the linear programs

will also give lower bounds on the optimal solution, which can be used

to characterize the quality of the solution.

7.3 Empirical Evaluation

We wish to verify that if having an optimal maximum contention

metric value actually improves the communication performance

empirically. Preliminary experiments with the Recursive Doubling

pattern for the MPI Allgather with 1KB messages on problems with 128

nodes and 256 nodes showed that EMAHD for maximum contention

metric with local optimization is about 15% to 25% faster than the default

mapping and is consistently better than other heuristics though by a

small margin. The EMAHD for maximum contention metric is better

over the EMAHD for hop-bytes metric by 1.6% to 6% on 1024 nodes

and by 1% to 13.8% on 512 nodes for the MPI Allgather for less than 1K

message sizes. For medium sized message sizes of size 128K, as shown

in table 7.2, the EMAHD for maximum contention performs better than

the default (identity) mapping by around 23%, and this improvement is

better than improvement with the EMAHD for hop-bytes metric. The

EMAHD for maximum contention metric with local optimization is not

feasible to compute for larger problem sizes, hence results for that are
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not presented here.

The improvement over the default is significant, though not as large

as that indicated by the maximum contention metric. The next direction

in this work is to develop heuristics to optimize this metric itself and

to make the metric more complete by considering atleast approximately

the inter job contention as well.

99



8. Conclusions and Future Work

The research conducted as part of this thesis reinstated the

importance of topology and routing aware mapping in scaling the

application performance on current supercomputers. Our results show

that in spite of worm-hole routing, link contention can severely affect

message latencies. Other important observation is that the nodes

allocated by the job scheduler do not correspond to any standard

topology, even when the machine does. The arbitrariness of the node

allocations makes the mapping problem more interesting.

We have used topology and routing aware mapping to improve

the performance of communication in the load balancing of QMC

application on Jaguar. We were able to reduce the communication time

in the load balancing phase by 60% with 120,000 cores and 20% on

12,000 cores, and this mapping also reduced MPI allgather time by a

similar amount. Our new dynamic load balancing algorithm developed

can be used for computations with independent identical tasks, and

the algorithm has some good theoretical properties. We have shown

that it performs better than the current methods used in QMC codes in

empirical tests.

In order to generalize the mapping techniques, we posed the

mapping problem with the hop-byte metric as a quadratic assignment
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problem and used a heuristic to directly optimize for this metric. We

have shown that using the GRASP heuristic leads to a better mapping

than existing methods, which typically use some metric just to evaluate

the heuristic, rather than to guide the optimization. We evaluated our

approach on realistic node allocations obtained on the Kraken system.

Our approach yields values for the metric that are up to 75% lower than

the default mapping and 66% lower than existing heuristics.

Preliminary experiments suggest that optimizing for the hop-byte

metric improves the actual MPI collective communication latency,

though not to the extent predicted by this metric. This is reasonable,

because the metric does not directly account for the congestion

bottleneck. One direction for future work is in reducing the time taken by

the GRASP heuristic. GRASP is a general solution strategy, rather than a

specific implementation. The particular implementation that we used is

for a general QAP problem. We can develop an implementation specific

to our mapping problem. For instance, solutions generated by the fast

heuristics can be used as starting points in GRASP, thereby reducing the

search space. Furthermore, we used a dense GRASP implementation

because the node graph is complete. We can remove edges with heavy

weights (corresponding to nodes that are far away) so that a sparse

algorithm can be used.

A different direction lies in optimizing for a different metric. The

actual bottleneck is contention on specific links. We have posed

the problem of minimizing the maximum contention as an integer

programming problem, and have developed heuristics to solve it. The

preliminary results for this metric are encouraging.

The use of on-chip interconnect on some of the current and future
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multi-core processors resulted in the importance of mapping even

within a node. On a Cell processor, we observed that the SPE-

thread affinity has a significant effect on inter-SPE communication

throughput. The performance with an optimal affinity is a factor of

two over the performance with default assignment. We developed

a tool that automatically determines the ideal mapping when given

a communication pattern. Using this tool on a particle transport

application showed a difference in total application performance of over

10% between the best and worst mappings.
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